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Abstract

The present working paper examines the interdependence of extra-virgin

olive oil prices in Greece, Italy and Spain, the three largest European produc-

ers. Unit root tests confirm that all national price series are integrated of order

one. Johansen’s cointegration analysis reveals a single long–run equilibrium

linking Greece and Spain. On the other hand, Italy shows no cointegration

with either partner. VECM is estimated for the Greece-Spain pair, highlight-

ing a significant adjustment in Greece but not in Spain. VAR models describe

the short–run dynamics between Greece–Italy and Italy–Spain. To capture

volatility clustering and co-movements, the DCC–GARCH methodology and

asymmetric extensions to the residuals are used. The results indicate a strong

persistence in conditional variances across all markets, with Italy showing a

greater sensitivity to new shocks and Spain exerting stronger short–run influ-

ence. The correlations are highly persistent and largely symmetric, with only

weak evidence of asymmetric effects. Overall, Spain emerges as the leading

market, driving short–run adjustments across the Mediterranean region.

Keywords: Extra virgin olive oil; Price dependence; Asymmetry;

JEL classification: C14, Q13, L66
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1 Introduction

There is an emerging consensus that the international agri-food system is becoming

more vulnerable to extreme events of price volatility. The unprecedented surge

in agricultural commodity prices following COVID-19 and the Russian invasion of

Ukraine has renewed interest in analyzing the interactions of food markets. In

addition, the recent inflationary pressures on olive oil prices are largely attributed to

adverse weather conditions, resulting in decreased production in major EU producer

countries, increased producer prices and subsequently affected import and retail

prices.

As agricultural markets become more integrated globally, food price shocks can

transfer to domestic markets much faster and with greater intensity (von Cramon-

Taubadel, Stephan and Goodwin, Barry K., 2021). There is overwhelming evidence

that volatility for many major internationally traded food commodities has increased

in recent years. In economic theory, volatility signifies variability and uncertainty

(Kose et al., 2003). Uncertainty is inherent in agriculture due to its nature; un-

predictable extreme weather events such as droughts and natural disasters such as,

floods, can greatly influence production and, consequently, agricultural prices. Olive

oil production also shows significant annual fluctuations due to the cyclical nature

of olive cultivation (non-steady yield of olive trees). Furthermore, the climate crisis

appears to exert significant pressure on olive oil prices, as well as on other agri-

cultural products. Such episodes of extreme price volatility can pose a significant

threat to global food security and raise concerns about the potential costs of food

market globalization.

At the same time, agricultural commodities form the basis for farmers’ income,

particularly in developing countries. Events of extreme price volatility have negative

implications for the economic welfare of many households in these countries and

are a significant threat to food security. The impact falls heavier on the poor, as

households in extreme poverty lack the capacity to substitute for lower-cost food

items, forcing a trade-off between reducing dietary quality or quantity and diverting

funds from other essential non-food expenditures like health and education (Lele
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et al., 2016).

Within the EU, Greece, Italy, and Spain were among the countries most affected

by the recent economic crisis. The budgetary constraints imposed by the crisis have

made it significantly more difficult for these governments to intervene and provide

financial support to agricultural producers during periods of extreme price volatility.

In agricultural economics, empirical findings indicated that volatility spillovers

between commodities are significant during periods of extreme world market volatil-

ity (Rapsomanikis and Mugera, 2011; Rapsomanikis, 2011). Regarding the olive oil

market, Emmanoulides and Fousekis (2013) utilized the statistical tool of copulas

to assess the degree and the structure of price dependence in the principal EU olive

oil markets (Spain, Italy and Greece) for the case of virgin and lampante olive oil.

According to their results, prices are likely to boom together, but not to crash to-

gether. This is true especially for the prices of the two most important players,

Italy and Spain. Additionally, their finding of asymmetric price co-movements im-

plies that the three principal spatial olive oil markets in the European Union cannot

be thought of as one great pool.

Panagiotou and Stavrakoudis (2023) assessed the strength and mode of price de-

pendence by time scale, among the extra virgin olive oil markets of Italy, Spain, and

Greece. For the empirical analysis, monthly prices from the aforementioned coun-

tries were used along with the tools of discrete wavelets and non-parametric copulas.

The results indicated that (a) price linkages in the short run were significantly dif-

ferent from those in the longer run, with price dependence being more substantial

in the longer run, and (b) in the very long run, price shocks of the same sign but of

different magnitude were transmitted from Italy to Spain with a higher probability

than they were transmitted from Italy to Greece. Accordingly, the time scale affects

the intensity as well as the pattern of dependence, pointing this way to asymmetric

price co-movement. Regarding the integration of the three markets, the findings of

asymmetric co-movement are not consistent with well-integrated markets.

Theofanous and Tremma (2024) employed linear and non-linear econometric

techniques to examine for long and short-run relations, market integration and price

transmission patterns, between the olive oil markets of Spain, Italy and Greece.
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Wholesale data were used for the period January 2000 to April 2022. Stable long-

run relations were revealed between the examined price pairs. Empirical findings

suggested that Spain is the central market. The Non-linear Momentum Threshold

Cointegration model identified as the strongest relation the one between the olive

oil prices of Italy and Greece. Price transmission was found to be asymmetric for

the pairs Spain-Greece and Spain-Italy, whereas symmetry was confirmed for the

pair Italy-Greece.

A better understanding of volatility spillovers between global agri-food markets

can assist in policy formulation. Despite the importance of this issue, the number

of studies on the transmission of price volatility and price interrelationships in spa-

tial EU agri-food markets has been relatively small. Against this background, the

objective of this study is to analyze price linkages between the extra virgin olive oil

markets of Italy, Spain, and Greece.

In order to account for volatility clustering and price co-movements, we apply

DCC–GARCH and asymmetric extensions to the residuals (Rastogi and Kanoujiya,

2023). The DCC-GARCH (Dynamic Conditional Correlation Generalized Autore-

gressive Conditional Heteroskedasticity) is a powerful and widely used class of mul-

tivariate volatility models (Mishra and Murugesan, 2024; Wu et al., 2024; Al-Anezi

et al., 2025). Its primary advantages stem from its ability to model the time-varying

nature of correlation between multiple series (Kousar et al., 2024; Dhaene et al.,

2022).

The DCC-GARCH models realistic, time-varying correlations. This is the core

advantage. Price correlations are not constant; they change over time, often cluster-

ing during periods of market stress (a phenomenon known as correlation breakdown

or increased dependence in downturns). Accordingly, the DCC model explicitly

captures this dynamic.

This study is organized as follows. Section 2 describes the situation on the

Mediterranean olive oil market. Section 3.1 describes the data and the modeling

framework. Section 4 presents the empirical results. The discussion is presented

in Section 5 and the conclusions, policy implications, limitations of the study, and

future research are presented in Section 6.
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2 Mediterranean Olive Oil Markets Triangle

Worldwide olive oil production has averaged 3 million tons, in the last decade. Eu-

ropean Union (EU) is the major producer of olive oil, accounting for about 60% of

global production (IOC, 2025). Within the EU, Spain, Italy, and Greece are the

dominant producers. In 2024/25, these three Mediterranean countries are responsi-

ble for about 88% of olive oil production within the EU. Spain with 56%, Italy with

21% and Greece with 11%, account for about 90% of the EU production.

Spain is the world leader in production volume and the leading olive oil producer

in the world with an average output of 800-1350 thousand tons per year. It typically

produces 50%-60% of the world’s olive oil, and in a good year, it can produce around

1.4 million metric tons. The key production region is Andalusia in southern Spain,

which produces around 80% of the country’s olive oil, with key provinces including

Jaén (often referred to as the ”World Capital of Olive Oil”), Córdoba and Sevilla.

Spanish production is characterized by large-scale, high-density, intensive orchard

plantations that allow efficient mechanical harvesting. Famous varietals include

Picual, which is robust and high in antioxidants, and Arbequina, which is smooth,

fruity, and sweet. Of the total olive oil production in Spain, 34% is extra virgin

(European Commission, 2025).

Italy is the second-largest EU producer. Its output is much smaller than that of

Spain, usually around 250-350 thousand tons per year. Production is spread across

the country, with key areas being Puglia (which produces nearly 50% of Italy’s oil),

Calabria, Tuscany, Umbria and Liguria. Italy’s production is defined by its diver-

sity, boasting over 500 olive varietals. Key varietals include Coratina (pungent,

bitter), Frantoio (complex, grassy), Leccino (mild, almondy), and Taggiasca (del-

icate, sweet). In Italy, 60% of the production is extra virgin olive oil (European

Commission, 2025).

Greece is the third largest EU producer. Its average output is 200-300 thousand

tons per year, occasionally surpassing Italy in a given year (i.e 2020/21), of which

more than 80% is extra virgin (IOC, 2025). It produces very little low-quality

lampante oil. Production is dominated by the Koroneiki varietal, a small olive that
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produces an exceptionally fruity, green, grassy and pungently peppery oil prized for

its robust flavor and high polyphenol (antioxidant) content (European Commission,

2025).

European Union is the world’s biggest consumer of olive oil, with a share close

to 35% (IOC, 2025). Italy, Spain and Greece account for 74% of the olive oil con-

sumption within the EU. Consumption patterns vary by country. Greeks are the

world’s largest consumers of olive oil, at about 9.3 liters per capita annually; this

domestic preference for oil shapes the industry. By comparison, Spain’s per capita

consumption is 7.5 liters, and Italy’s is 7.4 liters (IOC, 2025). Regarding the type of

oil consumed, Italy and Greece primarily consume extra virgin olive oil. In contrast,

in Spain, the consumption of extra virgin olive oil represents almost 50% of the total

domestic consumption of olive oil.

Olive oil trade statistics among Greece, Italy, and Spain are remarkable. Trade

flows between Spain and Greece are insignificant when comparing trade flows of

these two countries with Italy. In 2023/24, 28% of Spain’s exports and 60% of

Greece’s exports have Italy as their destination. Correspondingly, 73% of Italy’s

imports come from Spain and Greece (IOC, 2025).

Spain is a prominent supplier, exporting large amounts of bottled oil under its

own labels. It also sells a significant portion of its high-quality oil in bulk to other

countries such as Italy for blending, bottling, and branding. Spain’s worldwide

export share is approximately 20% (Panagiotou, 2015).

Greece exports a much larger percentage of its highest quality extra virgin olive

oil compared to other countries, although a surprising amount is also sold in bulk to

Italy. More than half of Greece’s annual olive oil production is exported, but only

a small fraction of this reflects the origin of the bottled product. Exports of Spain

and Greece to Italy consist to a large degree of extra virgin and virgin olive oil, sold

in bulk.

Italy is a massive net importer of olive oil, mainly from Spain, Greece, and

Tunisia, for blending and bottling. It is worth mentioning that although Italy is

a deficit market within the EU, it is one of the largest exporters of bottled olive

oil worldwide, with a share of around 30% (Panagiotou, 2015). Italy is the world
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leader in marketing, branding, and export value, and is synonymous with high-end

olive oil globally. The art of blending oils from different regions and varietals to

create a consistent and balanced flavor profile is a quintessential Italian skill. Bulk

imports from Spain and Greece are bottled and/or blended by a small number of

major Italian companies, and they are distributed worldwide.

As a massive producer, Spain’s overall reputation is for reliable quality and

value, though it also produces some of the world’s finest premium oils. Greece is

considered the quality and per capita powerhouse. Among connoisseurs, Greek oil

is renowned for its intense, robust flavor and exceptional quality. Its reputation is

growing internationally as consumers discover its distinctive character. Italian olive

oil is a symbol of quality, culture, and identity. Italian oil is considered a premium

product as a result of successful branding, while Greek and Spanish oil is sold in

Italy in bulk without any added value.

3 Methodology

3.1 Data

Data were obtained from the European Commission (2025). Data for the empirical

application are weekly prices of extra virgin olive oil (measured in euros per 100

kilograms) from Italy, Spain, and Greece. Concerning Portugal data, for extra virgin

olive oil, there are only 31 observations during the period 2020-2025. The insufficient

number of observations renders the application of the VAR/VECM methodology

infeasible. For this reason, Portugal has been excluded from further analysis.

Figure 1 presents the evolution of the prices of extra virgin olive oil for the coun-

tries mentioned above.1 The three price series evolve in a similar way, presenting

an increasing trend over the years 2020-2024. The dramatic price increase between

2023-2024 was primarily due to a severe drought in Spain (the world’s largest pro-

1According to the relevant Regulation by the European Commission, the extra virgin category
refers to olive oils obtained from the fruit of the olive tree at the optimum stage of ripening,
solely by mechanical or other physical means that do not lead to alteration of the oil and have
not undergone any treatment other than washing, decantation, centrifugation or filtration. Extra
virgin olive oil has a maximum of 0.8 grams of oleic acid per 100 grams of oil.
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ducer) and other Mediterranean countries, which decimated harvests. Following

that time period, Spanish and Greek extra virgin olive oil prices exhibit a down-

ward trend, whereas Italian prices are (almost) stable. A combination of improved

weather leading to a rebound in Spanish and Greek production and a slight re-

duction in demand due to consumers adapting to high prices are the main drivers

behind the decrease in prices. On the other hand, Italian olive oil is a symbol of

quality, culture, and identity. Olive oil from Italy is considered a premium product

as a result of successful branding, while Greek and Spanish oil is sold in Italy in

bulk without any added value, as mentioned earlier in Section 2. Italian packaging,

design, and the allure of ”Made in Italy” command premium prices worldwide, with

a reputation built on premium branding, stylistic diversity, and a strong link to

Italian cuisine and lifestyle. Consumers are willing to pay higher prices for the story

and the perceived quality associated with Italian olive oil.
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Figure 1: Time series of extra virgin olive oil prices, weekly data between 5/1/2020
and 24/8/2025.
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3.2 Stationarity and Cointegration

All time series have been logarithmically transformed tested for unit root at levels

and returns (Tsay, 2010). Tradional Johansen test has been also applied in order

to determine the order of coordination. Depending on the presence or not of coin-

tegration we follosed a VECM/VAR modeling strategy as described below.(Tsay,

2010).

3.2.1 Non-cointegrated pairs

When the Johansen trace test does not detect cointegration between two price series,

a vector error correction model is not appropriate. Instead, we estimate a vector

autoregression (VAR) in first differences:

∆yt = c+

p∑
i=1

Ai∆yt−i + εt, (1)

where ∆yt is the vector of log returns, Ai are coefficient matrices, and εt are innova-

tions. As before, the innovations exhibit time-varying volatility. We therefore model

their conditional covariance matrix Ht using a multivariate GARCH specification

such as the dynamic conditional correlation (DCC–GARCH):

εt | Ft−1 ∼ (0, Ht), Ht = DtRtDt, (2)

with univariate GARCH dynamics for the variances in Dt and Rt capturing the

evolving correlations. This approach allows us to analyse short-run spillovers and

volatility transmission between markets that do not share a long-run equilibrium.

3.2.2 Vector Error Correction Model

To analyse the long-run integration and short-run volatility dynamics of olive oil

markets, we employ a two-step approach that combines cointegration analysis with

a multivariate GARCH framework.

Let yt denote a (k×1) vector of log prices. If the elements of yt are integrated of

order one, I(1), but there exists a linear combination β⊤yt that is stationary, then
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the variables are cointegrated with cointegration vector β. Johansen’s trace test is

used to determine the number r of such cointegration relations. The vector error

correction model (VECM) is then written as

∆yt = αβ⊤yt−1 +

p−1∑
i=1

Γi∆yt−i + εt, (3)

where α is the (k × r) loading matrix describing the speed of adjustment toward

equilibrium, Γi are short-run dynamics, and εt are innovation terms.

3.2.3 Conditional Volatility and Correlation

The residuals εt are rarely homoskedastic in financial or commodity markets, typ-

ically exhibiting volatility clustering. To account for this, we specify their con-

ditional covariance matrix Ht through a dynamic conditional correlation GARCH

(DCC–GARCH) model. Specifically, let

εt = H
1/2
t zt, zt ∼ N (0, I), (4)

with

Ht = DtRtDt, (5)

where Dt is diagonal with univariate GJR–GARCH(1,1) variances

hi,t = ωi + αiε
2
i,t−1 + γiI{εi,t−1<0}ε

2
i,t−1 + βihi,t−1, (6)

and Rt is the time-varying correlation matrix.

3.2.4 Asymmetric DCC Model

The asymmetric DCC (aDCC) specification allows correlations to respond differently

to negative shocks:

Qt = (1− a− b)Q̄+ a(zt−1z
⊤
t−1) + g(nt−1n

⊤
t−1) + bQt−1, (7)
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where zt = D−1
t εt are standardized residuals, nt = min(zt, 0) captures negative

shocks, Q̄ is the unconditional correlation of zt, and (a, b, g) are the DCC parameters.

The correlation matrix is then

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2. (8)

3.3 Summary

The present study integrates the analysis of equilibrium relations through Johansen

cointegration and VECM with a DCC–GARCH modeling of volatility and correla-

tion. The aforementioned approach enables us to examine not only whether olive oil

markets share long-run price equilibria but also how volatility and cross-market cor-

relations evolve over time and whether they react asymmetrically to adverse shocks.

All calculations in this study were performed with R (version 4.5.1, R Core Team

(2014)).

4 Empirical Results

As a first step, each log-transformed time series is tested for stationarity(Tsay, 2010)

at both levels and first differences. The results of the unit root tests are presented

below.2

4.1 Stationarity

Greece

As we can see in Table 1 the unit root tests for Greece strongly suggest that the

log price series are non-stationary, while its first differences (returns) are stationary.

For log prices, the ADF and ERS statistics are never significant across specifications

and lags, indicating a failure to reject the null of a unit root. The KPSS statistics

are consistently large, rejecting the null of stationarity both under level and trend

2Shorcuts for unit root tests: i) ADF: Augmented Dickey–Fuller test, ii) KPSS:
Kwiatkowski–Phillips–Schmidt–Shin test, iii) Elliott–Rothenberg–Stock test, iV) Zivot–Andrews
test
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Table 1: Unit root tests for Greece

Test Types 0 1 2 0 1 2

ADF none 0.758 0.742 0.719 -15.925*** -11.608*** -10.639***
drift -1.300 -1.382 -1.352 -15.940*** -11.630*** -10.682***
trend -0.072 -0.204 -0.181 -16.063*** -11.766*** -10.891***

KPSS mu 21.331 10.700 7.152 0.485* 0.454** 0.444**
tau 3.781 1.907 1.280 0.211* 0.199* 0.196*

ERS constant -0.253 -0.313 -0.308 -11.191*** -7.363*** -6.038***
trend -0.475 -0.606 -0.603 -13.657*** -9.435*** -8.080***

ZA intercept -3.780 -3.734 -3.735 -16.638*** -12.425*** -11.745***
trend -3.666 -3.624 -3.652 -16.391*** -12.147*** -11.381***
both -4.304 -4.309 -4.300 -16.691*** -12.485*** -11.828***

specifications. Likewise, the Zivot–Andrews test does not provide evidence against

a unit root even when allowing for a possible structural break. By contrast, when

applied to returns, all tests uniformly reject the unit root null at the 1% level, with

ADF, ERS, and ZA statistics showing very large magnitudes and KPSS failing to

reject stationarity. Taken together, the evidence indicates that the Greek olive oil

price series is integrated of order one, I(1), and that the appropriate transformation

for subsequent modeling is the first difference of the log price.

Italy

Table 2: Unit root tests for Italy

Test Types 0 1 2 0 1 2

ADF none 3.142 2.313 2.370 -12.388*** -10.127*** -8.946***
drift -0.744 -0.886 -0.900 -12.709*** -10.498*** -9.375***
trend -1.075 -1.533 -1.470 -12.696*** -10.492*** -9.373***

KPSS mu 27.406 13.755 9.199 0.203*** 0.158*** 0.143***
tau 2.467 1.242 0.833 0.196* 0.152* 0.138**

ERS constant 1.950 1.228 1.258 -9.660*** -7.401*** -6.159***
trend -1.136 -1.584 -1.532 -11.551*** -9.234*** -7.985***

ZA intercept -2.855 -3.004 -2.957 -13.071*** -10.939*** -9.912***
trend -1.533 -1.881 -1.815 -12.838*** -10.658*** -9.574***
both -2.855 -3.182 -3.118 -13.348*** -10.970*** -9.949***

As shown in Table 2 the evidence for Italy aligns with the view that log prices

are non-stationary, while returns are clearly stationary. For the log-level series, the
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ADF and ERS statistics remain insignificant across all lag choices and specifications,

meaning the null hypothesis of a unit root cannot be rejected. At the same time, the

KPSS results are large, rejecting the null of stationarity under both level and trend,

reinforcing the I(1) classification. The Zivot–Andrews test, even when allowing for

a possible break in intercept or trend, does not overturn this conclusion, as the

statistics remain far from critical values. In contrast, the results for returns are

unambiguous. The ADF, ERS, and ZA tests strongly reject the null of a unit root

at the 1% level across all lags and specifications, while the KPSS statistics are small

enough to accept stationarity. Overall, the Italian olive oil price series behaves as

an integrated process of order one, and the stationary transformation for further

analysis is the first difference of the log price.

Spain

Table 3: Unit root tests for Spain

Test Types 0 1 2 0 1 2

ADF none 1.515 0.716 0.729 -8.535*** -6.936*** -6.613***
drift -1.651 -1.365 -1.519 -8.570*** -6.983*** -6.670***
trend 1.603 -0.101 -0.306 -8.761*** -7.213*** -6.946***

KPSS mu 20.804 10.425 6.963 1.988 1.246 0.961
tau 4.237 2.130 1.427 0.717 0.455 0.354

ERS constant 0.184 -0.253 -0.329 -8.054*** -6.539*** -6.197***
trend 0.821 -0.502 -0.691 -8.730*** -7.181*** -6.904***

ZA intercept -4.994** -4.285 -4.181 -9.543*** -7.953*** -7.754***
trend -3.938 -3.777 -3.661 -9.174*** -7.556*** -7.331***
both -4.371 -4.086 -4.037 -10.114*** -8.563*** -8.472***

As reported in Table 3, the Spanish series also display clear evidence of non-

stationarity in log prices, contrasted with stationarity in returns. In levels, the

ADF and ERS tests fail to reject the null of a unit root at any lag or specification.

The KPSS statistics are large across both level and trend settings, leading to a

rejection of stationarity. The Zivot–Andrews test suggests at most weak evidence of

a break, with one intercept specification close to significance, but overall the results

are consistent with a unit root. When applied to returns, the conclusions reverse.

The ADF, ERS, and ZA statistics are all highly significant across lags, strongly
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rejecting the null hypothesis of a unit root. The KPSS test values are lower than in

levels, consistent with stationarity. Taken together, these results show that Spanish

olive oil prices follow an integrated process of order one, and that the appropriate

stationary representation is obtained from the first difference of the log price.

4.2 Cointegration

Greece–Italy

Table 4: Johansen cointegration test for Greece–Italy

Test type Hypothesis Statistic 10% 5% 1%

Trace r = 0 6.50 22.76 25.32 30.45
r ≤ 1 2.74 10.49 12.25 16.26

Max–eig r = 0 3.76 16.85 18.96 23.65
r ≤ 1 2.74 10.49 12.25 16.26

In Table 4 the Johansen tests provide no evidence of cointegration between the

Greek and Italian prices. Both the trace and maximal eigenvalue statistics fall well

below the 10% critical values,3

indicating that the null hypothesis of no cointegrating relation cannot be re-

jected. This result holds under both the “long-run” and “transitory” specifications,

as the eigenvalues are small and the test statistics remain insignificant across cases.

Accordingly, the Greece–Italy pair should be modeled without an error correction

term, relying instead on a VAR in differences to capture the short-run dynamics

between the two markets.
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Table 5: Johansen cointegration test for Greece–Spain

Test type Hypothesis Statistic 10% 5% 1%

Trace r = 0 32.14*** 22.76 25.32 30.45
r ≤ 1 2.92 10.49 12.25 16.26

Max–eig r = 0 29.22*** 16.85 18.96 23.65
r ≤ 1 2.92 10.49 12.25 16.26

Greece–Spain

As shown in Table 5 both the trace and maximal eigenvalue tests reject the null of no

cointegration for the Greece–Spain pair at the 1% level. The r = 0 statistics (32.14

and 29.22, respectively) exceed the 1% critical values, while the r ≤ 1 statistics

remain far below their thresholds, implying a single cointegrating relation (r =

1). These findings are robust across the “long-run” and “transitory” specifications,

which yield identical test statistics in this case. Accordingly, Greece and Spain share

a stable long-run equilibrium, and the appropriate mean specification is a VECM

with rank one, augmented by short-run dynamics in differences.

Italy–Spain

Table 6: Johansen cointegration test for Italy–Spain

Test type Hypothesis Statistic 10% 5% 1%

Trace r = 0 6.85 22.76 25.32 30.45
r ≤ 1 3.25 10.49 12.25 16.26

Max–eig r = 0 3.60 16.85 18.96 23.65
r ≤ 1 3.25 10.49 12.25 16.26

In Table 6 the Johansen tests do not provide evidence of cointegration between

Italian and Spanish prices. The trace and maximal eigenvalue statistics are well

3Critical values for two variables, at 5%:

Null hypothesis Trace 5% CV Max-Eig 5% CV
r = 0 15.41 14.07
r ≤ 1 3.76 3.76

and at 10%:

Null hypothesis Trace 10% CV Max-Eig 10% CV
r = 0 13.43 12.30
r ≤ 1 2.71 2.71
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below the 10% critical values, both for the r = 0 and r ≤ 1 hypotheses. Thus,

the null of no cointegrating relation cannot be rejected, regardless of whether the

“long-run” or “transitory” specification is applied. Accordingly, the Italy–Spain

pair should be modelled using a VAR in differences, as no long-run equilibrium

relationship is supported by the data.

4.3 VECM and DCC–GARCH models

4.3.1 Greece–Italy

We estimated a bivariate DCC–GARCH(1,1) model(Tsay, 2010) for the Greece–

Italy return series.4 Each margin follows a univariate GARCH(1,1),

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1, i ∈ {EL, IT}, (9)

while the conditional correlations evolve according to

Qt = (1−α−β)Q̄+α εt−1ε
′
t−1+β Qt−1, Rt = diag(Qt)

−1/2Qt diag(Qt)
−1/2. (10)

Table 7: DCC(1,1) with GARCH(1,1) margins for Greece–Italy

Parameter Estimate Std. Error t-value p-value

µEL 0.000 0.001 0.000 1.000
ωEL 0.000 0.000 2.771 0.006
αEL,1 0.238 0.193 1.234 0.217
βEL,1 0.759 0.097 7.824 0.000
µIT 0.000 0.001 0.000 1.000
ωIT 0.000 0.000 0.285 0.776
αIT,1 0.135 0.049 2.731 0.006
βIT,1 0.860 0.054 15.867 0.000
dcca1 0.014 0.010 1.392 0.164
dccb1 0.965 0.017 58.244 0.000

The DCC–GARCH(1,1) specification in equation 9 provides a flexible way to

capture both individual market volatility dynamics and time–varying cross–market

4There is empirical evidence that GARCH(1,1) captures effectively the ARCH effect and higher
order models rarely improves forecasts
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Table 8: aDCC(1,1) with GARCH(1,1) margins for Greece–Italy

Parameter Estimate Std. Error t-value p-value

µEL 0.000 0.001 0.000 1.000
ωEL 0.000 0.000 2.752 0.006
αEL,1 0.238 0.196 1.214 0.225
βEL,1 0.759 0.104 7.265 0.000
µIT 0.000 0.002 0.000 1.000
ωIT 0.000 0.000 0.289 0.772
αIT,1 0.135 0.049 2.747 0.006
βIT,1 0.860 0.054 15.817 0.000
dcca1 0.014 0.010 1.443 0.149
dccb1 0.965 0.052 18.716 0.000
dccg1 0.000 0.061 0.000 1.000

correlations. In the marginal GARCH equations, the estimates reported in Table 8

show that both Greece and Italy exhibit strong volatility persistence: the β param-

eters are large and highly significant (βEL = 0.76, βIT = 0.86). This indicates that

volatility shocks decay only slowly and that periods of high volatility tend to cluster.

The ARCH coefficient for Italy (αIT = 0.135∗∗) is significant, implying that Italian

volatility responds more strongly to recent innovations, whereas the corresponding

term for Greece is weaker and not significant. This asymmetry in responses suggests

that the Italian market is more sensitive to contemporaneous shocks. On the other

hand, Greek volatility is mainly driven by its past.

Turning to the correlation dynamics, the DCC parameters in Table 7 reveal very

high persistence (dccb1 = 0.965∗∗∗), whereas the short–run response to new shocks

is small and insignificant (dcca1 = 0.014). This pattern implies that conditional

correlations are highly stable, governed mostly by their long memory rather than

immediate reactions. The asymmetric extension in Table 8 includes the dccg1 term,

which tests whether negative shocks affect correlations differently from positive ones.

The estimate is essentially zero and not significant, and a likelihood–ratio test con-

firms that the symmetric DCC model suffices. Overall, the results from Tables 7

and 8 suggest that the Greece–Italy pair shares strong and persistent volatility and

correlation dynamics, with no evidence of asymmetric responses. These findings

imply a stable and robust transmission of volatility between the two markets, with
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Italy playing a somewhat more reactive role in the short run.

4.3.2 Italy–Spain

Table 9: DCC(1,1) with GARCH(1,1) margins for Italy–Spain

Parameter Estimate Std. Error t-value p-value

µIT 0.000 0.001 0.000 1.000
ωIT 0.000 0.000 0.581 0.561
αIT,1 0.225 0.047 4.780 0.000
βIT,1 0.770 0.066 11.753 0.000
µES 0.000 0.002 0.000 1.000
ωES 0.000 0.000 0.040 0.968
αES,1 0.061 0.044 1.386 0.166
βES,1 0.926 0.060 15.564 0.000
dcca1 0.000 0.005 0.035 0.972
dccb1 0.999 0.034 29.099 0.000

Table 10: aDCC(1,1) with GARCH(1,1) margins for Italy–Spain

Parameter Estimate Std. Error t-value p-value

µIT 0.000 0.001 0.000 1.000
ωIT 0.000 0.000 0.581 0.561
αIT,1 0.225 0.047 4.780 0.000
βIT,1 0.770 0.066 11.753 0.000
µES 0.000 0.002 0.000 1.000
ωES 0.000 0.000 0.040 0.968
αES,1 0.061 0.044 1.386 0.166
βES,1 0.926 0.060 15.564 0.000
dcca1 0.000 0.005 0.035 0.972
dccb1 0.999 0.034 29.099 0.000
dccg1 0.001 0.005 0.240 0.810

The DCC–GARCH(1,1) model for Italy and Spain in Table 9 reveals strong per-

sistence in conditional volatility and highly stable correlations. For both markets,

the β parameters are large and highly significant (βIT = 0.77∗∗∗, βES = 0.93∗∗∗),

showing that volatility shocks persist and cluster over time. Italy exhibits a signif-

icant ARCH effect (αIT = 0.225∗∗∗), while the Spanish ARCH coefficient is small

and insignificant, confirming that Italian volatility is more reactive to new shocks

whereas Spanish volatility is largely driven by long–run persistence.
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The correlation dynamics are dominated by the persistence term (dccb1 = 0.999∗∗∗),

while the short–run correlation response is negligible (dcca1 = 0.000). This implies

that Italy–Spain conditional correlations evolve smoothly over time, without react-

ing strongly to recent innovations. The aDCC extension in Table 10 introduces

the asymmetry term dccg1, but the estimate is essentially zero and not significant.

Hence, there is no evidence that negative shocks drive correlations differently than

positive ones. Overall, the Italy–Spain pair is characterized by highly persistent

volatility and correlation structures, with Italy reacting more to fresh shocks but no

asymmetric effects in the correlation process.

4.3.3 Greece–Spain

Table 11: Cointegration vector for Greece–Spain (normalized on pGR)

Term Estimate Note

pGR 1.000 fixed
pES -0.920 from Johansen
c0 -0.471 from Johansen

Table 12: VECM loadings (α) and short-run effects (Γ), Greece–Spain

Equation / Regressor Estimate Std. Error t-value

∆pGR
t equation

ECTt−1 -0.146 0.027 -5.395
∆pGR

t−1 0.029 0.050 0.577
∆pES

t−1 0.369 0.089 4.142

∆pES
t equation

ECTt−1 0.001 0.014 0.105
∆pGR

t−1 0.069 0.025 2.727
∆pES

t−1 0.505 0.045 11.209

As reported by VECM in equation ??, Table 11 implies the long-run parity pGR
t−1−

0.920 pES
t−1−0.471 = 0. Table 12 shows that Greece adjusts strongly and significantly

towards this equilibrium (ECT loading−0.146, t = −5.40), while Spain’s adjustment

loading is near zero and insignificant. Short-run dynamics features sizable own and

cross effects: Spanish returns are strongly persistent (∆pES
t−1 in the ES equation,
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Table 13: aDCC(1,1) with GARCH(1,1) margins for Greece–Spain (residuals of
VECM)

Parameter Estimate Std. Error t-value p-value

µGR -0.001 0.001 -0.296 0.595
ωGR 0.000 0.000 2.417 0.016
αGR,1 0.496 0.298 1.667 0.096
βGR,1 0.480 0.077 6.246 0.000
µES 0.000 0.001 0.624 0.533
ωES 0.000 0.000 2.984 0.003
αES,1 0.186 0.095 1.953 0.051
βES,1 0.560 0.103 5.421 0.000
dcca1 0.150 0.076 1.989 0.047
dccb1 0.467 0.122 3.818 0.000
dccg1 0.360 0.210 1.712 0.087

t ≈ 11.21), and both equations display significant cross-market impacts at lag one

(e.g., ∆pES
t−1 in the GR equation, t ≈ 4.14; ∆pGR

t−1 in the ES equation, t ≈ 2.73).

Overall, Greece bears the burden of error correction, while Spain leads short-run

movements.

Turning to volatility and correlation structure, Table 13 documents persistent

conditional variances in both markets (large and highly significant β’s), with Italy-

style strong ARCH more evident for Spain (αES,1 ≈ 0.19, p ≈ 0.051) and a some-

what weaker, marginally significant ARCH component for Greece. The correla-

tion dynamics are persistent and reactive: dccb1 ≈ 0.47 is highly significant and

dcca1 ≈ 0.15 is borderline significant, indicating that correlations both retain mem-

ory and respond to new standardized shocks. The asymmetry parameter dccg1 is

only marginally significant at the 10% level, offering at best weak evidence that neg-

ative shocks alter correlations differently from positive shocks. In sum, the Greece-

Spain pair is cointegrated with adjustment concentrated in Greece, and its joint

volatility exhibits clustering with moderately persistent, time-varying correlations.

5 Discussion

The empirical findings of the present study reveal that the volatility of Italian prices

exhibits a stronger response to recent innovations, whereas the corresponding term
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Figure 2: Dynamics among olive oil markets (Greece, Italy, Spain). Blue = coin-
tegration, red = adjustment, black dashed = short-run VAR.

for Greece is not significant. This asymmetry in responses suggests that the Italian

market is more sensitive to contemporaneous shocks, whereas Greek volatility is

mainly driven by its past. The aforementioned findings of asymmetric responses

are in agreement with the studies of Emmanoulides et al. (2014) and Panagiotou

and Stavrakoudis (2023). Additionally, the results indicate that Italy plays a more

reactive role in the short run. Here are some of the reasons of why Italy is more

sensitive to short-run shocks:

1. Financialization and Speculation: Italy is the world’s largest exporter of olive

oil by value. Its market is deeply tied to financial markets. Prices are set on

commodity exchanges (such as the Mercato dei Derivati di Borsa Italiana), and

vast quantities are traded in futures and other derivative contracts. Traders

and speculators react immediately to news (a shock), buying or selling con-

tracts based on expectations of future scarcity or surplus. This amplifies the

impact of any contemporaneous shock.

2. Global Hub and Re-Exporter: Italy is not only a major producer, but also EU’s

largest olive oil importer. It imports bulk oil from Spain, Tunisia, Greece, and

other countries, blends it, bottles it, and re-exports it under Italian brands.

This makes its market incredibly sensitive to supply shocks anywhere in the

Mediterranean. A drought announcement in Spain, a tariff change in Tunisia,

or a logistics disruption at a major port (like Genoa) is a contemporaneous

shock that immediately affects Italian prices and volatility.

3. Brand Sensitivity and Consumer Sentiment: The value of Italian olive oil is

heavily tied to its premium branding (”Made in Italy,” PDO/PGI certifica-
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tions). A contemporaneous shock, such as a food safety scandal (e.g., an

”extra virgin” fraud investigation), a negative international press report, or

a sudden shift in global consumer demand (e.g., a key importing country im-

posing a tariff), will cause immediate volatility as brands scramble to protect

their reputation and market share.

4. High Integration with Global Markets: The Italian market is a price setter for

the world. It constantly receives and processes information from global supply

chains, currency markets (EUR/USD fluctuations affect export competitive-

ness), and international demand. This constant flow of information creates a

market that is perpetually reacting to the ”now.”

Greece’s olive oil market is more traditional, localized, and dominated by a vast

number of small-scale producers. Its behavior is more inertial, meaning that today’s

volatility is primarily a function of yesterday’s. Below are some of the reasons why

Greek volatility is mainly driven by its past:

1. Dominance of Small-Scale Production and ”Social Crop”: A considerable pro-

portion of Greek olive oil is produced by hundreds of thousands of smallholder

families (often with only a few trees). For them, olive oil is not just a com-

modity; it is a cultural staple and a form of savings. This leads to strong

behavioral inertia.

2. Holding Behavior: Farmers tend to hold onto their oil, releasing it to the mar-

ket gradually based on personal financial needs rather than reacting immedi-

ately to price shocks. This creates a delayed response to market conditions.

3. Past Volatility Creates Expectations: If last year was volatile (e.g. prices

spiked due to a poor harvest), farmers this year will be hesitant to sell, antic-

ipating similar price movements. This past experience directly drives current

decision-making and therefore current volatility.

4. Less Financialized and More Localized Market: The Greek market is by far less

involved in futures trading and financial speculation compared to Italy’s. Di-

rect transactions between producers and local mills or cooperatives more often
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determine prices. This lack of a high-frequency financial market layer dampens

the immediate impact of contemporaneous shocks. The market moves more

slowly, with momentum.

5. Higher Domestic Consumption and Inelastic Supply: Greeks have the highest

per capita consumption of olive oil in the world. A significant portion of pro-

duction is consumed domestically or by the extended family network. This

creates a relatively inelastic supply. Even if there is a price shock (e.g., a sud-

den surge in international demand), many small producers are either unable or

unwilling to immediately increase their market supply. The system’s reaction

is slow and based on past patterns.

6. Climatic and Harvest-Driven Momentum: Greece’s production is more suscep-

tible to intense biennial bearing cycles (alternating high and low-yield years).

A past year of low output (high volatility) strongly predicts a recovery year,

and vice versa. This biological and climatic momentum is a powerful autore-

gressive force. The memory of the size and quality of the past harvest is the

single most significant factor for the current season.

According to the empirical results of this work, the prices of Greek and Spanish

olive oil move together in a long-run equilibrium relationship. If they drift apart,

the Greek price does most of the adjusting to restore the equilibrium, while the

Spanish price acts as the ”leader” or anchor. These findings are in agreement with

the study by Theofanous and Tremma (2024) in which Spain is the central market.

The reasons might be:

1. Spain as the Dominant Price Setter: Spain is the undisputed giant of olive

oil production, accounting for 35% of global supply in an average year and

has massive industrialized farms. This volume gives Spain tremendous pricing

power. The Spanish price, particularly from key regions such as Jaén, becomes

the de facto global benchmark price. Greece, as a smaller producer ( 7% of

global supply), is a price taker relative to Spain.
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2. The Role of Italy as a Conduit: A massive amount of Greek olive oil is exported

in bulk to Italy. Italian blenders and bottlers use it to mix it with oils of other

origins. Therefore, the price that Italian buyers are willing to pay for Greek

oil is directly influenced by the price of Spanish oil (their main alternative).

If Spanish prices fall, Italian buyers will immediately offer less for Greek oil,

forcing the Greek price to fall to maintain its competitive position. This

mechanism forces Greece to adjust to Spain’s price level.

3. Market Size and Liquidity: The Spanish market is deeper and more liquid.

Large price movements in Spain, due to a harvest shock or increased export

demand, are transmitted almost instantly to the global market. The smaller

and more fragmented Greek market must then react and align itself with this

new global price level, doing the ”adjusting” in the cointegrating relationship.

4. Quality Perception & Branding: Although, both produce high-quality oil,

Spain has been more successful in building a consistent global brand for its

bulk and bottled oil. This brand power allows it to command a more stable

price premium, making its price the stronger anchor in the relationship.

In addition, periods of high volatility (characterized by large price swings) are often

followed by further periods of high volatility, and periods of calm are typically

followed by more calm. This is a near-universal feature of agricultural commodity

prices.

The reasons that might be common to both countries are:

1) Weather Shocks: Olive oil is an agricultural product. A drought, frost, or

heat wave in either country does not last a single day; it affects the entire growing

season. A weather shock in Spain (e.g. the 2023 drought) creates a prolonged period

of uncertainty about the final harvest size, causing sustained high volatility. The

same is true for Greece.

2) Sequential Information Flow: Information arrives in clusters. During the

growing season (Spring-Summer), forecasts about the harvest are updated continu-

ously. A poor forecast leads to several weeks or months of volatile price adjustments

as the market digests the information.
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3) Speculative Trading: In times of expected shortage, speculative traders enter

the market, amplifying price moves on both the upside and the downside. This

speculative activity tends to occur in bursts, creating volatility clusters.

6 Conclusions

This study presents a comparative analysis of olive oil producer prices in Greece,

Spain, and Italy, the European Union’s three largest olive oil-producing countries,

yielding a clear picture of how these markets interact in both the long and short run.

The findings reveal that the three major EU markets cannot be treated as a single

well-integrated market, a finding that aligns with previous research (see Section 1).

The analysis indicates a complex and asymmetric market structure, where Spain acts

as the primary price setter, Italy functions as a conduit for short-term volatility, and

Greece is primarily a price taker that adjusts to long-run trends set by Spain.

Employing Johansen’s cointegration analysis alongside a DCC-GARCH frame-

work, the study aimed to uncover the long-run equilibrium relationships and short-

run volatility spillovers that define this critical olive oil producer triangle.

By analyzing the relations among Greece, Italy, and Spain in pairs, we found

that cointegration is present only for the pair Greece-Spain. Greece adjusts back to

the long-run parity (ECT ≈ −0.146, t≈−5.4) while Spain leads short-run returns;

Correlations are persistent but not extreme, and asymmetry is at most marginal.

No cointegration is found for the Greece/Italy pair; a VAR in differences captures

short-run spillovers. The correlations are very stable, with no asymmetric response,

and Italy is the most shock-sensitive market in terms of volatility. No long–run link

emerges for the Italy/Spain pair; we have observed short–run dynamics. Volatility

clustering is pronounced, with Italy more reactive to new shocks, while the correla-

tions are persistence–dominated and symmetric.

Across all three markets, prices are I(1). The single long–run relation is Greece–

Spain; Spain anchors short–run mean dynamics, whereas Italy transmits volatility

more aggressively. Correlations are highly persistent and largely symmetric; evi-

dence of correlation asymmetry is weak.
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These findings have significant implications for policymakers at the EU level,

particularly in an era of increased price volatility linked to climate change and

geopolitical events. At the EU level, policymakers could recognize Spain’s role as

the primary price leader and Italy’s role as a highly reactive global hub—importing

bulk oil for blending and re-exporting. The analysis showed that production shocks

within Spain (i.e, a severe drought) will inevitably have spill-over effects, impacting

other countries, especially Greece. EU-level policies aiming at market stabilization

must, therefore, recognize Spain’s systemic importance. In addition, Italy’s role as a

conduit for short-term volatility makes it a critical channel for shocks transmission

throughout the Mediterranean. Understanding this dynamic is crucial for formu-

lating policies to mitigate extreme price events and to improve food security in the

EU.

The present work has certain limitations. First, the analysis has been limited

to the three largest EU producers. Portugal was excluded due to an insufficient

number of data observations. Second, other non-EU Mediterranean countries, like

Tunisia, a major supplier to Italy, is not included in the model.

Future research could include additional key Mediterranean players like Portugal

(if data becomes available) and Tunisia or even Turkey, to create a more complete

picture of regional price dynamics. Another interesting extension of the research

could be to incorporate other variables into volatility models, such as climate data

or harvest forecasts, to better explain the sources of shocks that drive the market.

This extension could offer deeper insights into the sources of market shocks. Also, in

the future, as more data becomes available, it would be possible to include dynamic

correlations in the model. Finally, this study only examined extra virgin olive oil.

Different grades of olive oil, such as virgin or lampante, could also be investigated.
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